
Shinji Sumimoto, Ph.D.
Next Generation Technical Computing Unit

FUJITSU LIMITED Oct. 25th, 2018

Topics from ISC18, LAD & Lustre Developer
Summit 2018

Copyright 2018 FUJITSU LIMITED0

JLUG2018

Outline of This Talk

�Lustre History

�SSD Based First Layer File System for the Next Generation
Super-computer
� A64FX: High Performance Arm CPU
� SSD Based First Layer File System for the Next Generation Super-computer
� Current Status of Lustre Based File System Development

�Contribution of DL-SNAP to Lustre Community

1 Copyright 2018 FUJITSU LIMITED

Lustre History

� 1999: Lustre file system 研究プロジェクト開始 by Peter J. Braam
� 2001: Cluster File Systems社設立
� 2007/9: Sun社がCluster File Systems社を買収
� 2009/4： Oracle社がSun社を買収、コミュニティに不安が走る
� 2010/4: Oracle社がサポートを自社ハードに制限、コミュニティ激震
�欧州EOFS、米国国研ベースOpenSFS、

World WideユーザベースHPCFSの３つのコミュニティに分散

� 2010/9: Whamcloud社設立
� Oracle社からWhamcloud社に技術者が集結

� 2010/12: Oracle社がLustre開発凍結
� 2011/4: LUG2011で３つのコミュニティがOpen SFS+EOFSとして再始動
� 2012/7: Intel社がWhamcloud社を買収
� 2018/6: DDN社がIntelのLustre事業を買収、新生Whamcloud誕生
� 2019: Luster 20 years anniversary

Copyright 2011 FUJITSU LIMITEDCopyright 2018 FUJITSU LIMITED2

LUG2009: Lustre 10th Anniversary

3 Copyright 2018 FUJITSU LIMITED

LUG 2011: Single Community

4 Copyright 2018 FUJITSU LIMITED

2018/6: DDN社がIntelのLustre事業を買収

5 Copyright 2018 FUJITSU LIMITED

ISC18: Lustre BoF

6 Copyright 2018 FUJITSU LIMITED

Whamcloud&Lustreへの期待
�Whamcloud
�ベンダー中立の立場でこれからもコミュニティへの貢献
�Lustre
�真のクラスタファイルシステムとして正当に発展

�富士通
�引き続きLustreを支持しコミュニティ発展に協力

7 Copyright 2018 FUJITSU LIMITED

� From presentation slides of Hotchips 30th and
Cluster 2018

� Inheriting Fujitsu HPC CPU technologies with
commodity standard ISA

A64FX: High Performance Arm CPU

Copyright 2018 FUJITSU LIMITED8

A64FX Chip Overview

9 Copyright 2018 FUJITSU LIMITED

� Architecture Features
• Armv8.2-A (AArch64 only)
• SVE 512-bit wide SIMD
• 48 computing cores + 4 assistant cores*

• HBM2 32GiB
• TofuD 6D Mesh/Torus

28Gbps x 2 lanes x 10 ports
• PCIe Gen3 16 lanes

� 7nm FinFET
• 8,786M transistors
• 594 package signal pins

� Peak Performance (Efficiency)
• >2.7TFLOPS (>90%@DGEMM)

• Memory B/W 1024GB/s (>80%@Stream Triad)

Netwrok
on

Chip

HBM2

PCIe
controller

Tofu
controller

HBM2

HBM2

HBM2

<A64FX>
CMG specification
13 cores
L2$ 8MiB
Mem 8GiB, 256GB/s

I/O
PCIe Gen3 16 lanes

Tofu
28Gbps 2 lanes 10 ports

A64FX
(Post-K)

SPARC64 XIfx
(PRIMEHPC FX100)

ISA (Base) Armv8.2-A SPARC-V9

ISA (Extension) SVE HPC-ACE2

Process Node 7nm 20nm

Peak Performance >2.7TFLOPS 1.1TFLOPS

SIMD 512-bit 256-bit

of Cores 48+4 32+2

Memory HBM2 HMC

Memory Peak B/W 1024GB/s 240GB/s x2 (in/out)

*All the cores are identical

HBM2 8GiBHBM2 8GiBHBM2 8GiB

�Extremely high bandwidth
• Out-of-order Processing in cores, caches and memory controllers
• Maximizing the capability of each layer’s bandwidth

Performance
>2.7TFLOPS

A64FX Memory System

Copyright 2018 FUJITSU LIMITED

CMG

L1 Cache
>11.0TB/s (BF= 4)

L2 Cache
>3.6TB/s (BF = 1.3)

L1D 64KiB, 4way

512-bit wide SIMD
2x FMAs

Core Core CoreCore

>230
GB/s

>115
GB/s

12x Computing Cores + 1x Assistant Core

Memory
1024GB/s (BF =~0.37)

>115
GB/s

>57
GB/s

HBM2 8GiB

L2 Cache 8MiB, 16way

256
GB/s

10

A64FX Core Features
� Optimizing SVE architecture for wide range of applications with Arm

including AI area by FP16 INT16/INT8 Dot Product
� Developing A64FX core micro-architecture to increase application

performance

Copyright 2018 FUJITSU LIMITED

A64FX
(Post-K)

SPARC64 XIfx
(PRIMEHPC FX100)

SPAR64 VIIIfx
(K computer)

ISA Armv8.2-A + SVE SPARC-V9 + HPC-ACE2 SPARC-V9 + HPC-ACE

SIMD Width 512-bit 256-bit 128-bit

Four-operand FMA 9 Enhanced 9 9

Gather/Scatter 9 Enhanced 9

Predicated Operations 9 Enhanced 9 9

Math. Acceleration 9 Further enhanced 9 Enhanced 9

Compress 9 Enhanced 9

First Fault Load 9 New

FP16 9 New

INT16/ INT8 Dot Product 9 New

HW Barrier* / Sector Cache* 9 Further enhanced 9 Enhanced 9

* Utilizing AArch64 implementation-defined system registers
11

� Boosting application performance up by micro-architectural enhancements,
512-bit wide SIMD, HBM2 and semi-conductor process technologies
• > 2.5x faster in HPC/AI benchmarks than that of SPARC64 XIfx

tuned by Fujitsu compiler for A64FX micro-architecture and SVE

A64FX Chip Level Application Performance

0

2

4

6

8

DGEMM Stream Triad Fluid dynamics Atomosphere Seismic wave
propagation

Convolution FP32 Convolution
Low Precision

Copyright 2018 FUJITSU LIMITED

830
GB/s

N
or

m
al

iz
ed

 to

S
PA

R
C

64
 X

Ifx

A64FX Kernel Benchmark Performance (Preliminary results)

Throughput
(DGEMM / Stream)

Application
Kernel

HPC AI

512-bit SIMD
Combined

Gather
INT8

dot productL2$ B/WMemory B/W L1 $ B/W

Baseline: SPARC64 XIfx

2.5TF

9.4x

(Estimated)

2.5x

3.4x
2.8x3.0x

12

PCIe

TNI0

TNI1

TNI2

TNI3 To
fu

 N
et

w
or

k
R

ou
te

rc c c c c c c c
c c c c c c c c

c

c c c c c c c c
c c c c c c c c
c

HMC HMC HMC HMC

HMC HMC HMC HMC

4
la

ne
s
×

10
 p

or
ts

SPARC64 XIfx
C M G

C M G Tofu2

PCIe

TNI0

NOC

c
c
c
c

c c
c
c

c
c
c
cc

c
c
c
c

c
c
cc

c
c
c

c
c

HBM2

c
c
c
c

c c
c
c

c
c

c
cc

HBM2

HBM2

c
c
c
c

c
c
cc

c
c
c

c
c

HBM2

TNI1
TNI2
TNI3
TNI4
TNI5 la

ne
s
×

10
 p

or
ts

2
la

ne
s
×

10
 p

or
ts

To
fu

 N
et

w
or

k
R

ou
te

r

A64FX
C M G C M G

C M G C M G TofuD

A64FX TofuD Overview

13 Copyright 2018 FUJITSU LIMITED

�Halved Off-chip Channels
� Power and Cost Reduction

� Increased Communication Resources
� TNIs from 2 to 4
� Tofu Barrier Resources

�Reduced Communication Latency
� Simplified Multi-Lane PCS

� Increased Communication Reliability
� Dynamic Packet Slicing: Split and Duplicate

Tofu
K.comp

Tofu2
FX100 TofuD

Data rate (Gbps) 6.25 25.78 28.05

of signal lanes per link 8 4 2

Link bandwidth (GB/s) 5.0 12.5 6.8

of TNIs per node 4 4 6
Injection bandwidth per
node (GB/s) 20 50 40.8

Tofu2 TofuD

TofuD: 6D Mesh/Torus Network

� Six coordinates: (X, Y, Z)×(A, B, C)
� X, Y and Z: sizes are depends on the system size
� A, B and C: sizes are fixed to 2, 3, and 2 respectively

� Tofu stands for “torus fusion”

Copyright 2018 FUJITSU LIMITED

Z

X
C

A

B

X×Y×Z×2×3×2

Y

14

TofuD: Packaging – CPU Memory Unit

� Two CPUs connected with C-axis
� X×Y×Z×A×B×C = 1×1×1×1×1×2

� Two or three active optical cable cages on board
� Each cable is shared by two CPUs

Copyright 2018 FUJITSU LIMITED

CPU

CPU

AOC (X)

AOC (Y)

AOC (Z)

AOC

AOC

15

TofuD: Packaging – Rack Structure

� Rack
� 8 shelves
� 192 CMUs or 384 CPUs

� Shelf
� 24 CMUs or 48 CPUs
� X×Y×Z×A×B×C = 1×1×4×2×3×2

� Top or bottom half of rack
� 4 shelves
� X×Y×Z×A×B×C = 2×2×4×2×3×2

Copyright 2018 FUJITSU LIMITED

Rack

Shelves

16

TofuD: Put Latencies & Throughput& Injection Rate

� TofuD: Evaluated by hardware emulators using the production RTL codes
� Simulation model: System-level included multiple nodes

Copyright 2018 FUJITSU LIMITED

Communication settings Latency
Tofu Descriptor on main memory 1.15 µs

Direct Descriptor 0.91 µs

Tofu2 Cache injection OFF 0.87 µs

Cache injection ON 0.71 µs

TofuD To/From far CMGs 0.54 µs

To/From near CMGs 0.49 µs

17

Put throughput Injection rate
Tofu 4.76 GB/s (95%) 15.0 GB/s (77%)
Tofu2 11.46 GB/s (92%) 45.8 GB/s (92%)
TofuD 6.35 GB/s (93%) 38.1 GB/s (93%)

�Next Generation File System Structure and Design
�Next-Gen 1st Layer File System Overview

Next Generation File System Design

Copyright 2018 FUJITSU LIMITED18

K computer: Pre-Staging-In/Post-Staging-Out Method

� Pros:
� Stable Application Performance for Jobs

� Cons:
� Requiring three times amount of storage which a job needs
� Pre-defining file name of stage-in/out processing lacks of usability
� Data-intensive application affects system usage to down because of waiting pre-

staging-in/out processing

19 Copyright 2018 FUJITSU LIMITED

Global File System

Computing Node
Application

Login
Node

Users

Job Control
Node

Local File System
using FEFS

Linux

LoopbackStage-in/out

Next-Gen File System Requirement and Issues

�Requirements
�10 times higher access performance
�100 times larger file system capacity
�Lower power and footprint

�Issues
�How to realize 10 times faster and 100 times larger file

access at a time?

20 Copyright 2018 FUJITSU LIMITED

Next-Gen. File System Design

� K computer File System Design
� How should we realize High Speed and Redundancy together?
� Introduced Integrated Two Layered File System.

� Next-Gen. File System/Storage Design
� Another trade off targets: Power, Capacity, Footprint

•Difficult to realize single Exabyte and 10TB/s class file system
in limited power consumption and footprint.

� Additional Third layer Storage for Capacity is needed:

21

Login
Server

Thousands of Users

Shared
Usability

Compute Nodes

Job Scheduler

Lustre Based
Ext[34] Based
Object Based

Application Specific

Compute NodesCompute NodesCompute Nodes

Transparent Data Access

Other
Systems

Other
Organization

Lustre Based

Lustre Based
Ext[34] Based
Object Based

Application Specific

Lustre Based
Ext[34] Based
Object Based

Application Specific

Application Specific
Existing FS

Object Based /data

High Capacity & Redundancy
& Interoperability

HSM, Other Shared FS,
Grid or Cloud Based

High Speed for Application

The Next Integrated Layered File System Architecture
for Post-peta scale System (Feasibility Study 2012-2013)

Copyright 2018 FUJITSU LIMITED

Next Gen. File System Design
� Introducing three level hierarchical storage.
� 1st level storage: Accelerating application file I/O performance (Local File System)
� 2nd level storage: Sharing data using Lustre based file system (Global File System)
� 3rd level storage: Archive Storage (Archive System)

� Accessing 1st level storage as file cache of global file system and local storage
� File cache on computing node is also used as well as 1st level storage

22 Copyright 2018 FUJITSU LIMITED

Global File System
Lustre based file system on 2nd Level Storage

Computing Node
Application

Login
Node

Users

Job
Control
Node

SSD Based
1st Level Storage

Linux

Archive Storage for 3rd Level Storage

Application’s Access Pattern and SSD Cache Effects

Copyright 2018 FUJITSU LIMITED

� Comparison of Effective Pattern for SSD based storage

File Read：
Effects

Rereading Case：◎
Non Rereading ：×

Rereading Case：◎
Non Rereading ：×

Rereading Case：◎
Non Rereading ：×

Rereading Case：◎
Non Rereading ：×

File Write：
Effects

Rewriting Case：◎
Non Rewriting ：○

Rewriting Case：◎
Non Rewriting ：○

Rewriting Case：◎
Non Rewriting ：○

File
Reading

File
Writing

Distributed
Files

Single Shared
Files (1)

Single Shared
Files (2)

I/O
Master

Processes

Processes

23

Data Sharing in a Job on SSD
� Write-Read in a process and among processes are effective to use SSD
� For Persistent Files: File cache of global file system should be shared among processes
� For Temporary Files: Two types of temporary file systems are effective to use SSD

� Temporary Local System (in a process)
� Temporary Shared File System (among processes)

Copyright 2018 FUJITSU LIMITED

write read

write

read

Process

write read
In a process Among processes

Process Process Process ProcessProcess

Process Process Process Process ProcessProcess

(1) write (2) write

(1) read (2) write

(1) write (2) read

(1) read (2) read

(1) write (2) write

(1) read (2) write

(1) write (2) read

(1) read (2) read

File File File File

File File File File

(1)
(2)

24

Next Gen. Layered File System Requirements

� Application views:
� Local File System: Application Oriented File Accesses(Higher Meta&Data I/O)
� Global File System: Transparent File Access
� Archive System: In-direct Access or Transparent File Access(HSM)

� Transparent File Access to the Global File System
� Local File System Capacity is not enough as much as locating whole data of

Global File System
� File Cache on node memory and Local File System enables to accelerate

application performance

25 Copyright 2018 FUJITSU LIMITED

Meta
Perf.

Data
BWs

Capacity Scalability Data Sharing
in a Job

Data Sharing
among Jobs

Local File System ◎ ◎ × ◎ ◎ ×
Global File System ○ ○ ○ ○ × ◎
Archive System × × ◎ × × ×

Next-Gen 1st Layer File System Overview
� Goal: Maximizing application file I/O performance
� Features:
� Easy access to User Data: File Cache of Global File System
� Higher Data Access Performance: Temporary Local FS (in a process)
� Higher Data Sharing Performance: Temporary Shared FS (among processes)

� Now developing LLIO(Lightweight Layered IO-Accelerator) Prototype

26 Copyright 2018 FUJITSU LIMITED

Temporary

Cache

2nd Level

1st Level

JobＡ

file3 file4 Global File
System(Lustre Based)

Node

App.

Node

App.

Node

App.

Node

App.

Node

App.

Compute
Cores

SSD

I/O w/
Assistant

Cores

Scalable
Job B

Local File
Systems

Cache

file2

Cache

file3file1
Shared Local

LLIO Prototype Implementation

� Two types of Computing Nodes
� Burst Buffer Computing Node(BBCN)

•Burst Buffer System Function with SSD Device

� Computing Node(CN)
•Burst Buffer Clients: File Access Request to BBCN as burst buffer server

Copyright 2018 FUJITSU LIMITED

CN CN CN CN
…

BBCN
SSD

CN CN CN CN
…

BBCN
SSD

2nd Layer File System

interconnect

Computing Node Cluster

IO/meta Requests

IO/meta Requests

Background data flushing
On demand data staging

arm／x86

27

File Access Sequences using LLIO (Cache Mode)

Copyright 2018 FUJITSU LIMITED

LLIO LLIO 2nd Layer FS
Client

CN BBCN

2nd Layer
File System

/gfsApp

ＬFS

SSD

meta server

I/O server

flush

HDD

2nd Layer
FS Server

open(file)

Meta Reqs: Pass through to 2nd Layer

write(fd, buf, sz)

write(fd, buf, sz)

Background Flushing

28

LLIO Prototype I/O Performance

� Higher I/O performance than those of NFS, Lustre
� Utilizing maximum physical I/O device performance by LLIO

Copyright 2018 FUJITSU LIMITED29

Write Performance Read Performance

Device

of IOR Streams

I/O
 B

an
dw

id
th

Device

of IOR Streams

I/O
 B

an
dw

id
th

Evaluated on IA servers using Intel P3608

� Our Strategy for contributing DL-SNAP:
�We are ready to contribute our current DL-SNAP code for Lustre 2.6
�We have made the LU-ticket for the DL-SNAP (LU-11512, Oct. 2018)

Contribution of DL-SNAP to Lustre Community

Copyright 2018 FUJITSU LIMITED30

What is DL-SNAP?

� DL-SNAP is designed for user and directory level file backups.
� Users can create a snapshot of a directory using lfs command with

snapshot option and create option like a directory copy.
� The user creates multiple snapshot of the directory and manage

the snapshots including merge of the snapshots.
� DL-SNAP also supports quota to limit storage usage of users.

Copyright 2018 FUJITSU LIMITED31

DL-SNAP Use-case 1

� Avoiding file deletion or corruption by file operation

User A
Needs data
three day

before Snapshot Data
-1 Day
File1

File2(Mod)

-2 Day
File1
File2

File3(Del)

-3 Day
File1
File2
File3

…

Making snapshot day by day using cron

File1
File2(Mod)

File3

User A

Restoring
by File Copy

Restoring
File3

Creating
Snaphot

#!/bin/bash

GEN=7
NEW_SNAP=`/bin/date '+%Y%m%d'`
OLD_SNAP=`/bin/date -d "${GEN} day ago"
+%Y%m%d`

lfs snapshot --create /home/usrA@$NEW_SNAP
lfs snapshot --delete /home/usrA@$OLD_SNAP

File1
File2(Mod)

File3
File 3

Deleted

Snapshot Data
-1 Day
File1

File2(Mod)

-2 Day
File1
File2

File3(Del)

-3 Day
File1
File2
File3

…

Copyright 2018 FUJITSU LIMITED32

DL-SNAP Use-case 2

�Maintaining large database with partially different data
� Updating database by an application using DL-SNAP

User A Analyzing difference
of databases

Snapshots
Dec.1

…

Input 1
Input 2
Input 3
Input 4

Application

Daily Incom
ing Data

：

Outputs
Large Database

Dec. 3 Dec. 10
Output Output Output

Snapshot

Copyright 2018 FUJITSU LIMITED33

Copyright 2018 FUJITSU LIMITED34

