100,000 Times Fold EBD "Convergent" System Overview

100,000 Times Fold EBD "Convergent" System Overview

Hamar (Highly Accelerated Map Reduce) [Shirahata, Sato et al. Cluster2014]

- A software framework for large-scale supercomputers w/ many-core accelerators and local NVM devices
 - Abstraction for deepening memory hierarchy
 - Device memory on GPUs, DRAM, Flash devices, etc.
- Features
 - Object-oriented
 - C++-based implementation
 - Easy adaptation to modern commodity many-core accelerator/Flash devices w/ SDKs
 - CUDA, OpenNVM, etc.
 - Weak-scaling over 1000 GPUs
 - TSUBAME2
 - Out-of-core GPU data management
 - Optimized data streaming between device/host memory
 - GPU-based external sorting
 - Optimized data formats for many-core accelerators
 - Similar to JDS format

Hamar Overview

Application Example : GIM-V

Generalized Iterative Matrix-Vector multiplication^{*1}

- Easy description of various graph algorithms by implementing combine2, combineAll, assign functions
- PageRank, Random Walk Restart, Connected Component
 - $v' = M \times_G v$ where $v'_i = \operatorname{assign}(v_i, \operatorname{combineAll}_i(\{x_i \mid j = 1..n, x_i = \operatorname{combine2}(m_{i,i}, v_i)\}))$ (i = 1..n)
 - Iterative 2 phases MapReduce operations

*1 : Kang, U. et al, "PEGASUS: A Peta-Scale Graph Mining System- Implementation and Observations", IEEE INTERNATIONAL CONFERENCE ON DATA MINING 2009

MapReduce-based Graph Processing with Out-of-core Support on GPUs

- Hierarchical memory management for large-scale graph processing using multi-GPUs
 - Support out-of-core processing on GPU
 - Overlapping computation and CPU-GPU communication
- PageRank application on TSUBAME 2.5

RAID cards

SSDCrucial m4 msata 256GB CT256M4SSD3
(Peak read: 500MB/s, Peak write: 260MB/s)SATA converterKOUTECH IO-ASS110 mSATA to 2.5' SATA
Device Converter with Metal FramRAID CardAdaptec RAID 7805Q ASR-7805Q Single

Prototype/Test machine

GPUから複数 mSATA SSD への I/O性能の予備評価

Sorting for EBD Plugging in GPUs for large-scale sorting

[Shamoto, Sato et al. BigData 2014]

Large Scale Graph Processing Using NVM

3. Experiment

The Graph 500 2014 June DRAM + NVM model

	MEM-CREST Node #2 (Supermicro 2027GR-TRF)	GraphCrest Node #1	EBD-RH5885v2 (Huawei Tecal RH5885 V2)
DRAM	128 GB	256 GB	1024 GB
NVM	ioDrive2 1.2 TB × 2	EBD-I/O 2TB × 2	 Tecal ES3000 800GBx2,1.2TBx2 EBD-I/O 4TB × 2
SCALE (Total Data Size)	30 (500GB)	31 (1TB)	33 (4TB)
GTEPS	7.98	13.80	3.11
MTEPS / W	28.88	35.21	3.42

The 2nd Green Graph500 list on Nov. 2013

- Measures power-efficient using **TEPS/W** ratio
- Results on various system such as Huawei's RH5885v2 w/ Tecal ES3000
 PCIe SSD 800GB * 2 and 1.2TB * 2
- http://green.graph500.org

In the **Big Data** category:

Rank	MTEPS/W	Site	Machine	G500 rank	Scale	GTEPS	Nodes
<u>1</u>	6.72	Tokyo Institute of Technology	TSUBAME KFC	47	32	44.01	32
2	5.41	Forschungszentrum Julich (FZJ)	JUQUEEN	3	38	5848	16384
<u>3</u>	4.42	Argonne National Laboratory	DOE/SC/ANL Mira	2	40	14328	32768
4	4.35	Tokyo Institute of Technology	EBD-RH5885v2	96	30	3.67	1
<u>5</u>	3.55	Lawrence Livermore National Laboratory	DOE/NNSA/LLNL Sequoia	1	40	15363	65536
6	1.89	Research Center for Advanced Computing Infrastructure	altix	50	30	37.66	1
7	0.73	Mayo Clinic	grace	68	31	10.32	64

In the **Big Data** category:

	Rank	MTEPS/W	Site	Machine	G500 rank	Scale	GTEPS	Nodes	Cores
	1	59.12	Kyushu University	GraphCREST- SandybridgeEP- 2.4GHz	57	30	28.48	1	32
	2	48.29	Kyushu University	GraphCREST- Sandybridge-EP- 2.7GHz	59	30	31.95	1	32
	<u>3</u>	35.21	Tokyo Institute of Technology	GraphCREST- Custom #1	71	31	13.8	1	32
	4	23.88	Tokyo Institute of Technology	MEM-CREST Node #2	85	30	7.98	1	16
	<u>5</u>	17.24	Kyushu University	GraphCREST- Bulldozer	72	31	13.63	1	64
	<u>6</u>	14.06	Tokyo Institute of Technology	TSUBAME-KFC	46	32	104.31	32	384
	Ζ	12.48	The Institute of Statistical Mathematics	ismuv2k2	42	32	131.43	1	640
	<u>8</u>	5.41	Forschungszentrum Julich (FZJ)	JUQUEEN	4	38	5848	16384	262144
	9	4.42	Argonne National Laboratory	DOE/SC/ANL Mira	З	40	14328	32768	524288
	<u>10</u>	1.35	Tokyo Institute of Technology	EBD-RH5885v2	105	30	3.67	1	48
	<u>11</u>	3.55	Lawrence Livermore National Laboratory	DOE/NNSA/LLNL Sequoia	2	40	15363	65536	1048576

Expectations for Next-Gen Storage System (Towards TSUBAME3.0)

- Achieving high IOPS
 - Many apps with massive small I/O ops
 - graph, etc.
- Utilizing NVM devices
 - Discrete local SSDs on TSUBAME2
 - How to aggregate them?
- Stability/Reliability as Archival Storage
- I/O resource reduction/consolidation
 - Can we allow a large number of OSSs for achieving ~TB/s throughput
 - Many constraints
 - Space, Power, Budget, etc.

Current Status

- New Approaches
 - Tsubame 2.0 has pioneered the use of local flash storage as a high-IOPS alternative to an external PFS
 - Tired and hybrid storage environments, combining (node) local flash with an external PFS
- Industry Status
 - High-performance, high-capacity flash (and other new semiconductor devices) are becoming available at reasonable cost
 - New approaches/interface to use high-performance devices (e.g. NVMexpress)