## Lustre Futures for HPC Storage

**Peter Braam** 

peter@braam.io

2017-10

## Contents

- Lustre 1998 2017
- Storage Tier Hardware Technology
- IO in big US HPC Systems
- Using IO in HPC
- New Software Developments
- Challenges and Conclusion

Speaker: introduced Lustre and other ideas. Presently independent researcher. Focus on future I/O, SKA telescope.

# Lustre 1998 - 2017

## A few thoughts & facts

Lustre has delivered:

- 1. interesting work to many 100's of people
- 2. business to dozens of companies
- 3. a cornerstone to HPC infrastructure

The commitment of the user, business and developer community to Lustre has created this value. I hope everyone will experience a sense of purpose they have contributed.

This community has shaped my life – completely unexpectedly, beyond my wildest dreams. Thank you!

## What wasn't done?

The Lustre object servers could have shaped the cloud

The metadata approach was too traditional

**However**: this was a mandate to focus this focus was key to Lustre's success

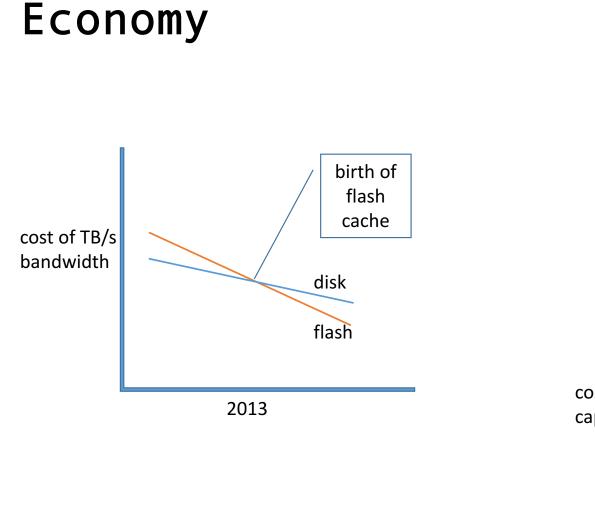
## Missed opportunities

A complete re-write:

in a modern language with user space servers new abstractions (containers, write back caches) 100x lower maintenance

Good usability:

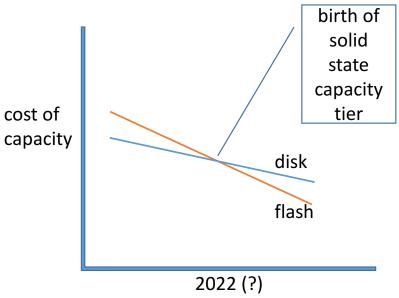
dozens of nearly useless GUI's impossibly difficult configuration and tuning only highly skilled vendors deliver great Lustre systems


# Future of HPC Storage

1/11/17

# Storage Tiers

## Tier Technologies and Parameters


|                        | High<br>Bandwidth<br>Memory | RAM      | NVRAM<br>XPOINT / PCM /<br>STTRAM | FLASH                               | DISK                              | ТАРЕ                             |
|------------------------|-----------------------------|----------|-----------------------------------|-------------------------------------|-----------------------------------|----------------------------------|
| BW Cost<br>\$/ (GB/s)  | \$12                        | \$10     | >\$10                             | \$200                               | \$2K                              | \$20K                            |
| Capacity Cost<br>\$/GB | \$9.60                      | \$8      | <\$8                              | \$0.3                               | \$0.02                            | \$0.01                           |
| Node BW<br>(GB/sec)    | 1 TB/s                      | 100 GB/s | <100GB/sec                        | 20 GB/s                             | 5 GB/s                            |                                  |
| Cluster BW<br>(TB/sec) | 10-100 PB/s                 | 100 TB/s | <100TB/sec                        | 5 TB/s                              | 100 GB/s                          | 10's GB/s                        |
| Software               | HDF5                        |          | DAOS                              | DDN IME<br>Cray Data Warp<br>Lustre | Lustre / GPFS<br>Campaign Storage | Archive &<br>Campaign<br>Storage |



#### Modeling:

cluster wait time for IO = O (1 / bandwidth) storage bandwidth cost = O (1/capacity cost) cost variations: 10^2-10^3 x perf variations: 10^2-10^3 x

many new models possible: tape - nvram



1/11/17

# Large US Deployments

## Large US deployments 2000 - 2023

#### **Server Centric Storage**

#### 2000 - 2014

Racks with compute nodes Disk enclosures up to 1TB/sec, disk, 100x size of RAM Lustre / GPFS

#### 2014-2018

Racks with blades Flash caches: 10x RAM, 5 TB/sec Lustre / GPFS / DDN IME / Cray Secondary disk FS: 100x RAM, 1TB/sec Clients for many core Intel chips- not yet for GPUs

#### **Client Centric Storage**

#### 2020 (Capability System at LANL)

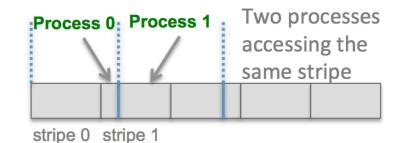
Every compute node: Lustre ZFS flash server 100 TB/sec (10 GB/sec /node) Secondary disk storage (100PB) – Campaign Storage

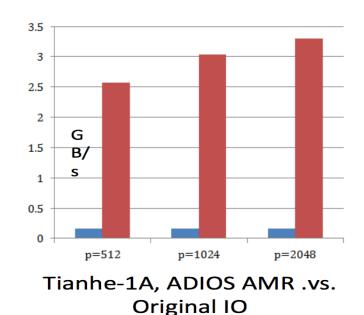
#### 2023 (US Exascale)

1TB HBM / node -Object store: 10,000 NVRAM server nodes 1PB / sec (100GB/sec / node) secondary flash(?) storage(1EB)

# Using IO in HPC

## Cluster File System Performance Trouble


#### Massive exchange of small data


Not un-common

Root causes:

- 1. Concurrent resources required
- 2. Data layout must be carefully chosen
  - Ideally 1 process uses only 1 server
  - Reasonable stripe sizes
- 3. Complicated metadata data interactions

• 2007: ADIOS library addresses these issues





## What does ADIOS really do?

#### What needs to be written

## How will it be written?

- New API not POSIX, very simple
- Form group of processes
- Declare what items and how many need to be read / written
- Do IO asynchronously

- External specification of file
- Use software plugin to drive the right storage infrastructure
- Describe the desired layout of data

## Support for storing structured data

## HDF5

- HPC standard for arrays, KV store and more
- Surprisingly small overlap with similar custom data layout for cloud
- Other formats (e.g. NetCDF) starting to leverage HDF5
- HDF5 beginning to use sophisticated lower layers (e.g. ADIOS)

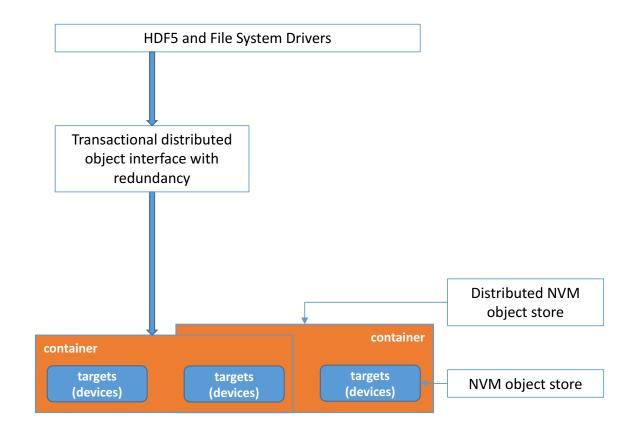
**Desired for Lustre**: Very best HDF5 integration.

# New IO Software

## DAOS – distributed async object store

#### A USA DOE – Intel – HDF5 group collaboration

2012 – 2015: initial prototype based on Lustre / ZFS 2015 - : 2<sup>nd</sup> pre-production NVM implementation Open Source


Key capabilities:

- Low level NVM transactional, versioned storage
- Distributed groups of processes collaborate on IO
- Scales to 100K's servers, 1B client processes
- Redundancy

#### Applications

Underpinning for HDF5 and legacy file system

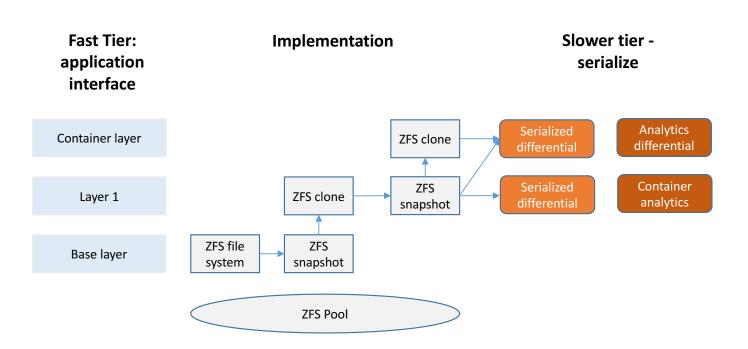
Probably not so easy to use directly



## Role of containers

## Fundamental issue: fast side vs slow side in hierarchy

#### Hence:


- Create fine grained data
- Move coarse grained data

#### **Container implementations**

- Can be based on ZFS
- Respect slower and faster interfaces

#### Other approaches:

- DDN IME
- Cray Data Warp



# Challenges & Conclusions

## Challenges

**API introduction** 

#### **Deployment contrast**

- Cluster File Systems leveraged well established API: POSIX
- New systems must create and establish API. "All" applications must come along.
- HPC must become more cloud compatible
- Cloud Data Storage presently has fundamentally different qualities

## Conclusions

**Beauty and Simplicity** 

- Simple, convincing systems are emerging:
  - DAOS, ADIOS, Containers, HDF5, Campaign Storage
- Exciting challenges exist
- Hardware developments have been fantastic

# Thank you